MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway.

نویسندگان

  • Zhenwei Pan
  • Xuelin Sun
  • Hongli Shan
  • Ning Wang
  • Jinghao Wang
  • Jinshuai Ren
  • Shuya Feng
  • Liangjun Xie
  • Chunying Lu
  • Ye Yuan
  • Yang Zhang
  • Ying Wang
  • Yanjie Lu
  • Baofeng Yang
چکیده

BACKGROUND Cardiac interstitial fibrosis is a major cause of the deteriorated performance of the heart in patients with chronic myocardial infarction. MicroRNAs (miRs) have recently been proven to be a novel class of regulators of cardiovascular diseases, including those associated with cardiac fibrosis. This study aimed to explore the role of miR-101 in cardiac fibrosis and the underlying mechanisms. METHODS AND RESULTS Four weeks after coronary artery ligation of rats, the expression of miR-101a and miR-101b (miR-101a/b) in the peri-infarct area was decreased. Treatment of cultured rat neonatal cardiac fibroblasts with angiotensin II also suppressed the expression of miR-101a/b. Forced expression of miR-101a/b suppressed the proliferation and collagen production in rat neonatal cardiac fibroblasts, as revealed by cell counting, MTT assay, and quantitative reverse transcription-polymerase chain reaction. The effect was abrogated by cotransfection with AMO-101a/b, the antisense inhibitors of miR-101a/b. c-Fos was found to be a target of miR-101a because overexpression of miR-101a decreased the protein and mRNA levels of c-Fos and its downstream protein transforming growth factor-β1. Silencing c-Fos by siRNA mimicked the antifibrotic action of miR-101a, whereas forced expression of c-Fos protein canceled the effect of miR-101a in cultured cardiac fibroblasts. Strikingly, echocardiography and hemodynamic measurements indicated remarkable improvement of the cardiac performance 4 weeks after adenovirus-mediated overexpression of miR-101a in rats with chronic myocardial infarction. Furthermore, the interstitial fibrosis was alleviated and the expression of c-Fos and transforming growth factor-β1 was inhibited. CONCLUSION Overexpression of miR-101a can mitigate interstitial fibrosis and the deterioration of cardiac performance in postinfarct rats, indicating the therapeutic potential of miR-101a for cardiac disease associated with fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of miR-24, Furin, and Transforming Growth Factor-β1 Signal Pathway in Fibrosis After Cardiac Infarction

BACKGROUND Cardiac fibrosis after primary infarction is a type of pathological phenomena as shown by increased collagen in myocardial cells. Transforming growth factor (TGF)-β1 is a critical factor participating in myocardial fibrosis. A previous study has shown the inhibitory role on TGF-β1 by microRNA-24 (miR-24) via targeting Furin. This study thus investigated the role of miR-24 and Furin/T...

متن کامل

Matrine suppresses cardiac fibrosis by inhibiting the TGF-β/Smad pathway in experimental diabetic cardiomyopathy

Cardiac fibrosis is one of the pathological characteristics of diabetic cardiomyopathy (DbCM). Matrine treatment has proven to be effective in cases of organ fibrosis and cardiovascular diseases. In the present study, the anti-fibrosis-associated cardioprotective effects of matrine on DbCM were investigated. Rats with experimental DbCM were administered matrine orally. Cardiac functions were ev...

متن کامل

Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...

متن کامل

Simvastatin ameliorates ventricular remodeling via the TGF-β1 signaling pathway in rats following myocardial infarction

Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)‑β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post‑myocardial infarction via the TGF‑β1 signaling pathway r...

متن کامل

Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21.

OBJECTIVE MicroRNAs are a class of small ribonucleotides regulating gene/protein targets by transcript degradation or translational inhibition. Transforming growth factor-β (TGF-β) is involved in cardiac fibrosis partly by stimulation of endothelial-to-mesenchymal transition (EndMT). Here, we investigated whether microRNA (miR)-21, a microRNA enriched in fibroblasts and involved in general fibr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 126 7  شماره 

صفحات  -

تاریخ انتشار 2012